Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 308
Filter
1.
Organ Transplantation ; (6): 46-54, 2024.
Article in Chinese | WPRIM | ID: wpr-1005233

ABSTRACT

Objective To investigate the role and mechanism of spliced X-box binding protein 1 (XBP1s) in the senescence of primary renal tubular epithelial cells induced by hypoxia/reoxygenation (H/R). Methods Primary renal tubular epithelial cells were divided into the normal control group (NC group), H/R group, empty adenovirus negative control group (Ad-shNC group), targeted silencing XBP1s adenovirus group (Ad-shXBP1s group), empty adenovirus+H/R treatment group (Ad-shNC+H/R group) and targeted silencing XBP1s adenovirus+H/R treatment group (Ad-shXBP1s +H/R group), respectively. The expression levels of XBP1s in the NC, H/R, Ad-shNC and Ad-shXBP1s groups were measured. The number of cells stained with β-galactosidase, the expression levels of cell aging markers including p53, p21 and γH2AX, and the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) were determined in the Ad-shNC, Ad-shNC+H/R and Ad-shXBP1s+H/R groups. Chromatin immunoprecipitation was employed to verify Sirtuin 3 (Sirt3) of XBP1s transcription regulation, and the expression levels of Sirt3 and downstream SOD2 after down-regulation of XBP1s were detected. Mitochondrial reactive oxygen species (mtROS) were detected by flow cytometry. Results Compared with the NC group, the expression level of XBP1s was up-regulated in the H/R group. Compared with the Ad-shNC group, the expression level of XBP1s was down-regulated in the Ad-shXBP1s group (both P<0.001). Compared with the Ad-shNC group, the number of cells stained with β-galactosidase was increased, the expression levels of p53, p21 and γH2AX were up-regulated, the levels of ROS, MDA and mtROS were increased, the SOD activity was decreased, the expression level of Sirt3 was down-regulated, and the ratio of Ac-SOD2/SOD2 was increased in the Ad-shNC+H/R group. Compared with the Ad-shNC+H/R group, the number of cells stained with β-galactosidase was decreased, the expression levels of p53, p21 and γH2AX were down-regulated, the levels of ROS, MDA and mtROS were decreased, the SOD activity was increased, the expression level of Sirt3 was up-regulated and the ratio of Ac-SOD2/SOD2 was decreased in the Ad-shXBP1s+H/R group (all P<0.05). Conclusions Down-regulation of XBP1s may ameliorate the senescence of primary renal tubular epithelial cells induced by H/R, which probably plays a role through the Sirt3/SOD2/mtROS signaling pathway.

2.
Cambios rev. méd ; 22 (2), 2023;22(2): 919, 16 octubre 2023. ilus, tabs
Article in Spanish | LILACS | ID: biblio-1516520

ABSTRACT

El envejecimiento y la longevidad son procesos que involucran una serie de factores genéticos, bioquímicos y ambientales. En esta revisión se tratan algunas cuestiones sobre estos dos procesos biológicos y epigenéticos. Se presentan los genes más importantes en estos procesos, así como se ejemplifican enfermedades que presentan un aceleramiento o falla en la longevidad y el envejecimiento. Se usa el análisis inteligente de datos para hallar interacciones de proteínas/genes que expliquen estos dos fenómenos biológicos.


Aging and longevity are processes that involve a series of genetic, biochemical and environmental factors. This review addresses some issues about these two biological and epigenetic processes. The most important genes in these processes are presented, as well as diseases that present an acceleration or failure in longevity and aging. Intelligent data analysis is used to find protein/gene interactions that explain these two biological phenomena.


Subject(s)
Humans , Male , Female , Aged , Aged, 80 and over , Biological Phenomena , Aging , Cellular Senescence , Genes , Genetics , Longevity , Quality of Life , Life Expectancy , Apoptosis , Oxidative Stress , Telomerase , Aging, Premature , Ecuador , Immune System , Metabolism
3.
Indian J Pathol Microbiol ; 2023 Mar; 66(1): 9-13
Article | IMSEAR | ID: sea-223396

ABSTRACT

Background: Oral lichen planus is a T-cell-mediated chronic inflammatory disease affecting approximately 1% to 2% of the population, the etiology of which is currently unknown. The objectives of this study were to observe if senescence occurs in oral lichen planus, through the assessment of the immunohistochemical expression of a novel marker for senescence called Senescence marker protein-30 or regucalcin, and compare the expression to that in oral lichenoid reaction and non-specific inflammation. Subjects and Methods: The study material consisted of 30 cases of oral lichen planus, 15 cases of oral lichenoid reaction and 15 cases of non-specific inflammation. The number of positive cells in ten randomly selected high power fields were counted in the epithelium and the connective tissue separately and the mean was determined. Results: Mann–Whitney U test was used to statistically analyze if there was any significant difference in the expression of Senescence marker protein-30 between oral lichen planus, oral lichenoid reaction and non-specific inflammation. Even though a greater expression was seen in the oral lichen planus cases than oral lichenoid reaction, the difference in both the epithelium and connective tissue was not statistically significant. Conclusion: This study shows that in addition to the already known mechanisms like apoptosis and increased cell proliferation rates, the activated T-lymphocytes may also trigger a senescent change in the cells of oral lichen planus. As with the other mechanisms, this is also seen only in a small proportion of the cases.

4.
An. bras. dermatol ; 98(1): 17-25, Jan.-Feb. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1429628

ABSTRACT

Abstract Background Oxidative stress is strongly associated with cellular senescence. Numerous studies have indicated that microRNAs (miRNAs) play a critical part in cellular senescence. MiR-181a was reported to induce cellular senescence, however, the potential mechanism of miR-181a in hydrogen peroxide (H2O2)-induced cellular senescence remains obscure. Objective The aim of this study is to investigate the role and regulatory mechanism of miR-181a in H2O2-induced cellular senescence. Methods Human foreskin fibroblasts (HFF) transfected with miR-181a inhibitor/miR-NC with or without H2O2 treatment were divided into four groups: control + miR-NC/miR-181a inhibitor, H2O2 + miR-NC/miR-181a inhibitor. CCK-8 assay was utilized to evaluate the viability of HFF. RT-qPCR was used to measure the expression of miR-181a and its target genes. Protein levels of protein disulfide isomerase family A member 6 (PDIA6) and senescence markers were assessed by western blotting. Senescence-associated β-galactosidase (SA-β-gal) staining was applied for detecting SA-β-gal activity. The activities of SOD, GPx, and CAT were detected by corresponding assay kits. The binding relation between PDIA6 and miR-181a was identified by luciferase reporter assay. Results MiR-181a inhibition suppressed H2O2-induced oxidative stress and cellular senescence in HFF. PDIA6 was targeted by miR-181a and lowly expressed in H2O2-treated HFF. Knocking down PDIA6 reversed miR-181a inhibition-mediated suppressive impact on H2O2-induced oxidative stress and cellular senescence in HFF. Study limitations Signaling pathways that might be mediated by miR-181a/PDIA6 axis were not investigated. Conclusion Downregulated miR-181a attenuates H2O2-induced oxidative stress and cellular senescence in HFF by targeting PDIA6.

5.
São Paulo med. j ; 141(4): e2022141, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1432449

ABSTRACT

ABSTRACT BACKGROUND: Screening for probable and confirmed sarcopenia using sociodemographic and anthropometric indicators can be a practical, cheap, and effective strategy to identify and treat older people susceptible to this condition. OBJECTIVES: To identify cutoff points for sociodemographic and anthropometric variables in screening probable and confirmed sarcopenia in community-dwelling older adults. DESIGN AND SETTING: This was a cross-sectional study of community-dwelling older adults in Araranguá, Santa Catarina, Brazil. METHODS: Sociodemographic (age, education) and anthropometric (weight, height, body mass index [BMI], waist circumference [WC], and dominant calf circumference [DCC]) factors were considered as predictors. The outcomes were probable sarcopenia (reduction in muscle strength assessed by time ≥ 15 s in the five-time sit-to-stand test) and confirmed sarcopenia (reduction in strength and muscle mass). Receiver operating characteristic curve analysis was used to analyze the ability to track sociodemographic and anthropometric variables for sarcopenia. RESULTS: In 308 older adults, WC > 91 cm in women and age > 69 years in men were useful in screening for probable sarcopenia. The variables age, weight, BMI, WC, and DCC can be used to screen for sarcopenia in older women and men. CONCLUSION: Sociodemographic and anthropometric variables are simple and accessible tools for sarcopenia screening in older adults.

6.
Journal of Zhejiang University. Science. B ; (12): 101-114, 2023.
Article in English | WPRIM | ID: wpr-971473

ABSTRACT

Given its state of stable proliferative inhibition, cellular senescence is primarily depicted as a critical mechanism by which organisms delay the progression of carcinogenesis. Cells undergoing senescence are often associated with the alteration of a series of specific features and functions, such as metabolic shifts, stemness induction, and microenvironment remodeling. However, recent research has revealed more complexity associated with senescence, including adverse effects on both physiological and pathological processes. How organisms evade these harmful consequences and survive has become an urgent research issue. Several therapeutic strategies targeting senescence, including senolytics, senomorphics, immunotherapy, and function restoration, have achieved initial success in certain scenarios. In this review, we describe in detail the characteristic changes associated with cellular senescence and summarize currently available countermeasures.


Subject(s)
Humans , Cellular Senescence , Carcinogenesis , Immunotherapy , Aging , Tumor Microenvironment
7.
Chinese Journal of Biotechnology ; (12): 1609-1620, 2023.
Article in Chinese | WPRIM | ID: wpr-981157

ABSTRACT

Lamin B1 (LMNB1) is highly expressed in liver cancer tissues, and its influence and mechanism on the proliferation of hepatocellular carcinoma cells were explored by knocking down the expression of the protein. In liver cancer cells, siRNAs were used to knock down LMNB1. Knockdown effects were detected by Western blotting. Changes in telomerase activity were detected by telomeric repeat amplification protocol assay (TRAP) experiments. Telomere length changes were detected by quantitative real-time polymerase chain reaction (qPCR). CCK8, cloning formation, transwell and wound healing were performed to detect changes in its growth, invasion and migration capabilities. The lentiviral system was used to construct HepG2 cells that steadily knocked down LMNB1. Then the changes of telomere length and telomerase activity were detected, and the cell aging status was detected by SA-β-gal senescence staining. The effects of tumorigenesis were detected by nude mouse subcutaneous tumorigenesis experiments, subsequent histification staining of tumors, SA-β-gal senescence staining, fluorescence in situ hybridization (FISH) for telomere analysis and other experiments. Finally, the method of biogenesis analysis was used to find the expression of LMNB1 in clinical liver cancer tissues, and its relationship with clinical stages and patient survival. Knockdown of LMNB1 in HepG2 and Hep3B cells significantly reduced telomerase activity, cell proliferation, migration and invasion abilities. Experiments in cells and tumor formation in nude mice had demonstrated that stable knockdown of LMNB1 reduced telomerase activity, shortened telomere length, senesced cells, reduced cell tumorigenicity and KI-67 expression. Bioinformatics analysis showed that LMNB1 was highly expressed in liver cancer tissues and correlated with tumor stage and patient survival. In conclusion, LMNB1 is overexpressed in liver cancer cells, and it is expected to become an indicator for evaluating the clinical prognosis of liver cancer patients and a target for precise treatment.


Subject(s)
Animals , Mice , Telomerase/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Telomere Shortening , In Situ Hybridization, Fluorescence , Mice, Nude , Telomere/pathology , Carcinogenesis
8.
Chinese Journal of Radiological Medicine and Protection ; (12): 418-424, 2023.
Article in Chinese | WPRIM | ID: wpr-993106

ABSTRACT

Objective:To investigate the protective effect of racanisodamine on lung injury in mice exposed to irradiation.Methods:C57BL/6 mice were randomly divided into control group, racanisodamine group, 18 Gy irradiation group (model group) and racanisodamine combined with 18 Gy irradiation group (treatment group), with 5 mice in each group. The mice in the treatment group received racanisodamine (5 mg/kg) intraperitoneally 3 d before irradiation and contained the whole experiments. Then, single chest irradiation of 18 Gy X-rays was performed both in the model and treatment groups. The racanisodamine group and treatment group received racanisodamine intraperitoneally once a day until 6 weeks after irradiation. The mice were killed at 6 weeks after irradiation. The lung histopathology was observed by HE staining. Serum and bronchial alveolar lavage fluid (BALF) inflammatory cytokines such as TNF-α, IL-1β and IL-6 were determined by ELISA method. Cell senescence was detected by SA-β-Gal staining. The expressions of Nrf2, p-Nrf2 and p62 in lung tissue were performed by immunehistochemistry and Western blot assays.Results:Compared with the model group, the scores of HE staining were decreased ( t=8.66, P<0.01), the number of infiltrated inflammatory cells in BALF were decreased ( t=10.70, P<0.01), and protein concentration in BALF had lower levels ( t=6.75, P<0.01), the serum TNF-α, IL-1β and IL-6 were decreased significantly ( t=8.17, 4.58, 6.54, P<0.01), the activity of SA-β-gal was decreased, and the expressions of Nrf2, p-Nrf2 were enhanced ( t=6.42, 7.30, P<0.01), while the expression of p62 was reduced ( t=4.62, P<0.01) in the treatment group. Conclusions:Racanisodamine plays the protective effect of radiation-induced lung injury by alleviating inflammation associating with the activating of Nrf2-related pathway, which reversed radiation-induced cell senescence.

9.
Chinese Journal of Radiological Medicine and Protection ; (12): 149-153, 2023.
Article in Chinese | WPRIM | ID: wpr-993066

ABSTRACT

Radiation skin injury can be induced by medical exposure, occupational exposure, and emergency exposure. Many relevant studies focused on the prevention and treatment of radiation-induced skin injury, but the underlying molecular mechanisms have not been fully clarified. It has been demonstrated that radiation-induced premature cellular senescence is involved in radiation skin injury. To discuss the relationship between radiation-induced premature cellular senescence and radiation-induced skin injury, this paper reviewed the mechanism of radiation-induced skin injury, the promotion of premature cellular senescence and related signal pathways, and the role of premature cellular senescence in wound healing.

10.
Journal of Clinical Hepatology ; (12): 2454-2459, 2023.
Article in Chinese | WPRIM | ID: wpr-998314

ABSTRACT

There are gradual increases in the incidence rates of metabolic associated fatty liver disease (MAFLD) and type 2 diabetes mellitus (T2DM), with close relationship and mutual interaction between the two diseases, but the specific mechanism is still unclear. Studies have shown that T2DM and MAFLD may cause aggravation of each other through insulin resistance, inflammation, some hepatocyte factors, and cellular senescence and protect each other through some hepatocyte factors. Further research on the association between T2DM and MAFLD and the mechanism of comorbidity is of great significance for the clinical prevention and treatment of the two diseases.

11.
Chinese Journal of Endocrinology and Metabolism ; (12): 532-537, 2023.
Article in Chinese | WPRIM | ID: wpr-994356

ABSTRACT

Cellular senescence is a state in which cells enter permanent cell cycle arrest, which is characterized by senescence-associated secretory phenotype secretion, macromolecular damage, metabolic dysregulation and so on. Recent studies have shown a close relationship between cellular senescence and type 2 diabetes. On the one hand, the glycolipotoxic microenvironment of type 2 diabetes can accelerate cell senescence and accumulation. On the other hand, cellular senescence can promote the development of type 2 diabetes. For example, senescence of pancreatic β-cells leads to β-cell dysfunction and adipocytes senescence results in the secretion of pro-inflammatory cytokines, causing disturbances in lipid metabolism and exacerbating insulin resistance. Moreover, senescence of endothelial cells, retinal endothelial cells, and other cell types contributes to the occurrence of chronic complications in diabetes. Cellular senescence is not only an important factor in the onset of type 2 diabetes but also a consequence of its progression. Targeting cellular senescence holds promise as a new strategy for the treatment of type 2 diabetes.

12.
Chinese Journal of Endocrinology and Metabolism ; (12): 48-54, 2023.
Article in Chinese | WPRIM | ID: wpr-994296

ABSTRACT

Objective:To investigate the effect of autophagy related gene Atg101 on white adipocyte senescence.Methods:An Atg101 knockdown model of 3T3-L1 mature adipocytes was constructed to probe the effect of Atg101 on autophagy-related proteins LC3 and p62 protein. The RNA-seq database of human subcutaneous adipose tissue was constructed and analyzed, and the co-expressed gene set was predicted based on the pearson correlation coefficient( R2>0.4, P<0.05) between FPKM values of Atg101 and other gene, followed by KEGG and Reactome enrichment analysis. Young mouse(8 weeks old) and old mouse(18 months old) models were established, and the expression levels of Atg101 in inguinal white adipose tissue and epididymal white adipose tissue were detected by quantitative real-time PCR(RT-qPCR) and Western blot. Furthermore, the differences in white adipocyte senescence-associated secretory phenotype(SASP), cell cycle and mitochondrial homeostasis-related genes were detected by RNA-seq, Western blot, and RT-qPCR to analyze the effects of Atg101 silencing on adipocyte senescence. Results:The autophagy-related protein LC3-Ⅱ expression was significantly decreased and p62 protein was induced after Atg101 was knockdowned in 3T3-L1 adipocytes, suggesting impaired cell autophagy. KEGG enrichment analysis revealed that Atg101 co-expressed gene set was mainly enriched in autophagy and senescence-related pathways; Reactome enrichment analysis revealed that this gene set was associated with multiple cell cycle signaling pathways. RT-qPCR and Western blot confirmed that both mRNA and protein levels of Atg101 were down-regulated in inguinal white adipose tissue of aging mice, and protein levels in epididymal white adipose tissue were also significantly reduced. Finally, it was further confirmed that SASP-related genes were induced after Atg101 knockdown in white adipocytes, and cell cycle-specific gene expression was restricted and cytokine-dependent protein kinase inhibitors p16 and p21 expressions were significantly increased, while mitochondrial homeostasis regulatory genes were also suppressed.Conclusions:Knockdown of Atg101 may regulate white adipocyte senescence by inhibiting autophagic activity, presenting impaired mitochondrial homeostasis.

13.
Chinese Journal of Geriatrics ; (12): 621-625, 2023.
Article in Chinese | WPRIM | ID: wpr-993864

ABSTRACT

Renal aging is a gradual process of degenerative changes in tissue structure and physiological function and is closely related to the occurrence and development of acute kidney injury(AKI)and chronic kidney disease(CKD). The cellular and molecular mechanisms of renal aging mainly include cellular senescence and reduced autophagy, and are regulated by nutritional factors.Promoting reasonable and moderate energy-and protein-restricted diets, strengthening the supervision of food additives and preservatives, cultivating safety awareness of residents, and strictly controlling the daily salt intake are potential nutritional intervention strategies to prevent and delay renal aging.Given the limited number of studies, there is an urgent need to further explore the effectiveness of the above strategies to provide a new evidence-based approach to formulating precise and feasible personalized nutritional intervention programs.

14.
Journal of China Pharmaceutical University ; (6): 188-197, 2023.
Article in Chinese | WPRIM | ID: wpr-973004

ABSTRACT

@#Acetyl dipeptide-1 cetyl ester (AD-1) is a synthetic peptide composed of acetic acid and cetyl alcohol with arginine and tyrosine, which has certain anti-inflammatory and skin barrier enhancement effects, has been used in cosmetics for sensitive skin.Meanwhile, the ingredient has also been used in anti-aging cosmetics, but there is a lack of published scientific evidence on anti- senescence aspect.In this study, we investigated the related effects of AD-1 by evaluating its in vitro antioxidant and antiglycation efficacies.Furthermore, we established a photoaging model on primary rat dermal fibroblasts by repeated exposures to UVA irradiation.MTT assay was used to detect the effects of AD-1 on the cell viability.RT-qPCR was used to determine the effects of AD-1 on the mRNA levels of senescence-related p21, p53, MMPs, IL6, Col1, Col3 and autophagy-related p62, ATG5, ATG7.Western blot was used to detect the effects of AD-1 on the protein levels of p16, p21, p53, Col1, LC3B and p62.SA-β-gal was performed to indicate senescence level of the cell.MDC was performed to indicate autophagy level.Intracellular reactive oxygen species were monitored by fluorescent probes DCFH-DA.The results showed that AD-1 could reduce UVA-induced the cell damage and regulate the abnormal expression of mRNA levels. It alleviated the abnormal protein levels of p16, p21, p53, Col1, LC3B and p62 induced by UVA. These results suggested that AD-1 has not only antioxidant and antiglycation effects but also can activate autophagy to achieve anti-senescence effect.

15.
Chinese Journal of Experimental Ophthalmology ; (12): 183-187, 2023.
Article in Chinese | WPRIM | ID: wpr-990830

ABSTRACT

Cellular senescence is a response process in which cells are activated by ischemia, hypoxia, oxidative stress, DNA damage, reactive oxygen species deposition and other stimulations.Senescent cells markers include such as senescence-associated β-galactosidase (SA-β-gal) activation, P16INK4a upregualtion, senescence-associated heterochromatic foci (SAHF) accumulation, senescence-associated secretory phenotype (SASP) generation, telomere shortening and so on.P16INK4a/Rb and P19 ARF/P53/P21 Cip1 pathways are two classic cell senescence signaling pathways, which are interconnected and independent on each other.In recent years, glaucoma is considered as a blinding eye disease associated with cell senescence.Research on cell senescence in glaucoma mainly focuses on trabecular meshwork and Schlemm cannel endothelial cells senescence leading to increased resistance of aqueous humor outflow pathway, and the mechanism of retinal ganglion cells senescence and treatment in glaucoma.As an irreversible stage before cell death, deeper study on the mechanism of retinal ganglion cells senescence, and specific blocking of cell senescence will provide a new target for reducing the aqueous humor outflow resistance and protecting the optic nerve in glaucoma.This article reviewed characteristics, inducements, molecular signaling pathways of cellular senescence in glaucoma.

16.
Journal of International Oncology ; (12): 33-36, 2023.
Article in Chinese | WPRIM | ID: wpr-989516

ABSTRACT

As an effective treatment for cancer, chemotherapy not only removes tumor cells, but also produces obvious killing effects on proliferating cells, especially hematopoietic cells, resulting in bone marrow suppression after chemotherapy, and affecting the effects of chemotherapy drug treatment and treatment cycle. Therefore, starting from the aspects of hematopoietic microenvironment damage and hematopoietic stem cell aging, to explore the mechanism of myelosuppression after chemotherapy, which provides new ideas and theoretical support for the intervention and management of bone marrow suppression after cancer chemotherapy.

17.
International Journal of Pediatrics ; (6): 169-172, 2023.
Article in Chinese | WPRIM | ID: wpr-989059

ABSTRACT

Bronchopulmonary dysplasia(BPD)is a chronic respiratory system disease that causes respiratory failure and death in premature infants, and hyperoxic exposure is the main risk factor for its occurrence.Cellular senescence describes a state of cell cycle blockade, and in recent years studies have confirmed that exposure to hyperoxia can cause cellular senescence.Cellular senescence plays a crucial role in the development of the lung epithelium, lung interstitium, pulmonary vasculature, and airways, and abnormal development of these tissues is associated with the development of BPD.Therefore, this paper takes cellular senescence and BPD as the starting point to review the mechanism of hyperoxia-induced cellular senescence in the occurrence and development of BPD and the anti-aging drugs currently applied in clinical practice, in order to provide a new direction for the prevention and treatment of BPD.

18.
Journal of Environmental and Occupational Medicine ; (12): 997-1004, 2023.
Article in Chinese | WPRIM | ID: wpr-988741

ABSTRACT

Background Pneumoconiosis is the most serious occupational disease in China, and silicosis accounts for about half of it. Any intervention effect of physical exercise as the key and core of lung rehabilitation training on silicosis is still unclear. Objective To explore potential intervention effect of physical exercise on silicotic mice. Methods Forty SPF C57BL/6 male mice were randomly divided into four groups, 10 in each group, including a control group, a physical exercise group, a silicosis model group, and a silicosis model + physical exercise intervention group. Silicotic mouse model was established by using 50 μL SiO2 suspension (200 mg·mL−1). A treadmill was used to prepare mice receiving physical exercise at 0° inclination, 12.3 m·min−1, 60 min·d−1, 5 d·week−1 for 4 weeks. Pathological morphology of lung tissues was evaluated after hematoxylin-eosin (HE) staining; deposition of collagen in lung tissues was evaluated after Van Gieson (VG) staining; expression of p-protein kinase R-like endoplasmic reticulum kinase (PERK) was detected by immunofluorescence staining; expressions of cyclin dependent kinase inhibitors (p21) and p-p38 mitogen activated protein kinase (p38) were detected by immunohistochemistry. The protein expressions of endoplasmic reticulum stress signal factors [p-inositol-requiring enzyme-1α (p-IRE-1α), p-PERK, and p-eukaryotic initiation factor-2α (p-eIF-2α)], senescence signal factors (p-p53, p21, and p16), mitogen-activated protein kinase (MAPK) signal factors [p-p38, p-extracellular regulated protein kinases (p-ERK), and p-stress-activated protein kinase (p-JNK)] were detected by Western blotting. Results After designed acute SiO2 exposure, the images of micro computed tomography (CT) showed high density shadows in lung tissues of the silicotic mice and less shadows in lung tissues of the physical exercise intervention mice. After HE staining, the proportions of silicotic nodule area in lung tissues was (18.67±3.89) % in the silicosis model group, and significantly decreased to (8.78±1.05) % in the silicosis model + physical exercise intervention group (P<0.05). After VG staining, the proportion of collagen fiber area of lung tissues was (10.37±2.18) % in the silicosis model group, and significantly decreased to (4.35±0.89) % in the silicosis model + physical exercise intervention group (P<0.05). The results of immunofluorescence staining showed that in the silicosis model group, the expression of p-PERK increased at the location of silicotic nodules, while in the silicotic model + physical exercise intervention group, the expression of p-PERK decreased. The immunohistochemical staining results showed that the expression of p21 and p-p38 increased in the lung tissues of the silicosis model group; the expression of p21 and p-p38 decreased in the lung tissues of the silicosis model + physical exercise intervention group. The results of Western blotting showed that compared with the control group, the expression levels of p-IRE-1α (0.11±0.03), p-PERK (0.95±0.40), p-eIF-2α (3.53±0.91), p-p53 (1.78±0.07), p21 (1.98±0.10), p16 (1.26±0.17), p-p38 (0.41±0.09), p-ERK (0.42±0.05), and p-JNK (3.20±1.23) of the silicosis model group were all upregulated (P<0.05). Compared with the silicosis model group, the expression levels of p-IRE-1α (0.03±0.01), p-PERK (0.31±0.12), p-eIF-2α (0.30±0.06), p-p53 (0.76±0.08), p21 (0.18±0.11), p16 (0.70±0.24), p-p38 (0.03±0.00), p-ERK (0.19±0.03), and p-JNK (0.46±0.21) of the silicosis model + physical exercise intervention group were downregulated (P<0.05). Conclusion Physical exercise may alleviate pulmonary fibrosis in silicotic mice, and inhibit abnormal expressions of endoplasmic reticulum stress signal, MAPK signal, and senescent signal.

19.
Journal of Medical Biomechanics ; (6): E189-E194, 2023.
Article in Chinese | WPRIM | ID: wpr-987934

ABSTRACT

Microgravity is a typical feature of the space. A large number of space flights and foundation simulation experiments have shown that cells show typical biological characteristics of aging, such as reduced cell proliferation and cell cycle arrest under microgravity or simulated microgravity. However, the molecular mechanism by which microgravity or simulated microgravity affects cellular senescence is not well understood. Understanding the mechanism controlling cellular senescence induced by microgravity environment is helpful for exploring anti-aging strategies and targeted interventions in space. In recent years, domestic and foreign scholars have carried out a number of researches and explorations on the effect of microgravity and simulated microgravity on cellular senescence as well as the related mechanisms. In this review, the latest research progress of this filed was summarized.

20.
Cancer Research on Prevention and Treatment ; (12): 384-389, 2023.
Article in Chinese | WPRIM | ID: wpr-986731

ABSTRACT

Objective To evaluate the prognosis and immunotherapy response of patients with bladder cancer by constructing a risk-score model of cellular senescence-related signature (SRS), as well as to explore the clinical application value of SRS in bladder cancer. Methods Senescence genes were screened from TCGA-BLCA, and cellular SRS genes were screened according to LASSO regression. A bladder cancer risk-score model was constructed based on the SRS genes to analyze the survival difference and model-fit degree of TCGA-BLCA high- and low-risk groups. Univariable and multivariable Cox regression was used to analyze the prognostic risk factors of bladder cancer. Overall survival differences of high- and low-risk groups in GEO-BLCA database were verified, and variations in immunotherapy responses were analyzed in IMvigor210 databases. According to the result of β-gal chromogenic reaction in bladder cancer and normal paracancer tissues, the existence of cell senescence was determined. Results Eight marker genes were screened, and patients were divided into high- and low-risk groups according to the median risk score constructed by the marker genes. The 5-year survival rate of high risk group was lower than that of low risk group (training and validation sets P < 0.05). The area under the ROC curve of TCGA-BLCA in 1-, 3-, and 5-year were 0.657, 0.660, and 0.688, and those for GSE13507 were 0.665, 0.665, and 0.613, respectively. SRS risk score can be used as an independent risk factor for the prognosis of patients with bladder cancer. The SRS risk score in the response group was lower than that in the non-response group during bladder cancer immunotherapy (P < 0.05). The β-gal staining of bladder cancer tissue was positive, but the β-gal staining of adjacent normal tissue was negative. Conclusion Cell senescence occurs in bladder cancer tissues. SRS risk score can predict the clinical prognosis of patients with bladder cancer, and patients with low score can benefit from immunotherapy. SRS is a reliable biomarker for the prognosis and immunotherapy response of bladder cancer.

SELECTION OF CITATIONS
SEARCH DETAIL